Scalable Internet Multicast Routing

M. Parsa, and J.J. Garcia-Luna-Aceves
Department of Computer Engineering
University of California

Santa Cruz, CA 95064

courant, jjQcse.ucsc.edu

Abstract

In distributed network applications such as multiparty
teleconferencing, users often need to send the same mes-
sage to several other users. To achieve such one-to-
many or many-to-many communication efficiently in
wide-area internetworks, it is imperative to support mul-
ticast, i.e., concurrent sending of messages from one
source to multiple receivers.

The current IP architecture for multicast routing, the
Core-Based Tree (CBT) protocol, and Protocol Indepen-
dent Multicast (PIM) protocol have « number of limita-
tions for very large internets. To eliminate their lim-
itations, we propose a new multicast routing protocol,
called Scalable Internet Multicast Protocol (SIMP).

1 Introduction

Multicast service in WANs has been achieved by ex-
tending two common routing algorithms used by net-
work layer routers, i.e., distance-vector and link-state
algorithms [2]. This service enables sources to send a
single copy of a message to a special address that repre-
sents a set of destinations, and the message is delivered
to each destination in the set.

Based on Deering’s work [2], the TCP/IP suite con-
structs multicast delivery trees on-demand [6, 8]. For
example, the Multicast Backbone, MBone, in today’s
Internet consists of a set of routers running DVMRP.
However, there are several shortcomings with the exist-
ing IP architecture for multicast routing. First, the ar-
chitecture is inefficient when group members are sparse
and widely-distributed in the internet. Because it is as-
sumed that most of the networks have group members,
all corners of the internetwork are flooded periodically
with messages when the state information for a mul-
ticast tree times out. Second, packets traverse paths
that do not lead to any receivers or sources, consum-
ing network resources. Therefore, routers not on the
multicast tree incur memory and processing overhead
to construct and maintain the tree for the lifetime of
the group. Third, the multicast routing information is
stored for each multicast source. If there are S sources
and G groups, the multicast protocols scale as O(SG).

To overcome the above shortcomings of the IP ar-
chitecture, two protocols have been recently proposed:
core-based tree (CBT) architecture [1] and protocol in-
dependent multicast (PIM) architecture [3]. Although
both approaches constitute a substantial improvement

*This work was supported in part by the Advanced Research
Projects Agency (ARPA) under contract F19628-93-C-0175

over the current multicast architecture, each protocol
has several disadvantages.

The disadvantages of CBT follow: There is only a
single shared tree per group. The shared tree imposes
a hard constraint on the optimality of routes to all re-
ceivers from multiple sources. Furthermore, the com-
munication traffic of different sources for a group tends
to concentrate on a few links in a network [9], further
decreasing the capacity of a network. The tree is rooted
ad hoc at a special router called the core. The optimal-
ity of routes can suffer from poor selection of cores. In
a dynamic network, CBT requires a dynamic core se-
lection and placement to achieve some upper bound on
delay to receivers; otherwise, the paths in the tree can
arbitrarily deviated from the shortest paths to receivers
in the network. However, to have the core router topo-
logically centered is NP-hard in a dynamic network. As
a core-based tree is rooted at the (primary) core, in case
of the core failure, the tree may have to be flushed to be
re-constructed rooted at an alternate backup core. This
response to core failure disrupts the communication of
all sources to group members. As we demonstrate in a
subsequent section, even with the loop-detection scheme
of CBT [1], transient loops can be created in the mul-
ticast tree. This can lead to replicates of data packets
loading the network links used by the multicast tree.
The data packets sent unicast towards the core of a tree
by a source can also suffer from loops and be delayed.

The disadvantages of PIM are the following: PIM
relies on periodic refresh of state information, called
soft-state mechanism, which adds to the control mes-
sage overhead. Moreover, to achieve stable behavior,
the timers controlling the periodic refresh of state infor-
mation have to be slow, which necessarily incurs long la-
tencies for “seeing” network disturbances and dynamics.
Even under stable network topology and group member-
ship, there is a control message overhead in maintaining
a multicast tree. The part of a shared tree upstream of
RPs is not shared between different sources. That is,
routers upstream of an RP on a path from a source
have per source state information for the same group.
Using a shared tree then does not limit the resource
consumption of the shared tree over having a tree per
source. This also makes the placement of RPs more
critical for the efficiency of a shared-tree. In using a
shared tree, an inappropriate heuristic for RP selection
can seriously affect the scalability and overhead of a
shared tree. As we demonstrate subsequently, data and
control messages can traverse transient loops. This can
cause receivers to select alternate distal RPs, giving the
receivers poor distribution. The interaction of PIM’s

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Scalable Internet Multicast Routing £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 6
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

timeout mechanism and the oscillatory behavior of uni-
cast transient loops can degrade the efficiency of PIM.

We have developed a new multicast routing proto-
col called Scalable Internet Multicast Protocol (SIMP),
which solves the shortcomings of the current IP archi-
tecture, PIM, and CBT. SIMP offers a flexible, simple
and unified approach to the construction of multicast
trees that are shared among group members or that are
shortest-path trees to receivers. It is easy to accommo-
date the needs of a wide range of multicast applications
from sparse widely-distributed replicated databases to
delay-sensitive interactive applications. The shared tree
of a group scales as ©(1) with respect to the number
of group sources S. SIMP can be source-initiated or
receiver-initiated. SIMP is robust and adapts under
dynamic network conditions, such as topology or link
cost changes, to maintain multicast routing. SIMP has
fast response time to network conditions since network
events such as link failures are propagated as fast as
messages can travel, as opposed to timers expiring to
reflect the new state. Under stable network conditions,
SIMP has no maintenance or control message overhead.

The next section presents examples of looping prob-
lems in CBT and PIM. Section 3 describes the multicast
and network models used in SIMP. Section 4 gives an
overview of SIMP. A detailed description and verifica-
tion of SIMP is given elsewhere [7].

2 Looping problems in CBT and PIM
2.1 Looping in CBT

In CBT, the initiator of a group selects a set of core
routers. The identity of all cores, which are explicitly
ranked, is communicated to all cores by the initiator.
Each core joins the highest ranked (operational) core
to form a core backbone. Receivers become part of the
core tree by sending explicit join messages to the highest
ranked core. The join messages are acknowledged by
routers on the tree and the flow of the acknowledgement
message to receivers establishes tree edges.

10

Figure 1: Example.

In CBT, a source sends its data unicast to the core
of the multicast tree for a group. The data can experi-
ence arbitrary routing table looping on the way to the
core from the source, if the underlying unicast routing
is not loop-free. This can cause undue congestion and
increased delays in the network. There is no mechanism
in CBT to prevent this. Moreover, the mechanism to
detect loops in the process of reconfiguring the core tree
in response to network dynamics may prove inadequate.
The basic method for avoiding loops in CBT is timeout
of unacknowledged join requests that never reach the
multicast tree; however, CBT needs and incorporates
an additional measure because of the potential for loop
formation in the multicast tree when the tree partitions
due to link failures. Because the originating router of a
join request that reaches a tree can be the root of that

tree. Unfortunately, all of this is insufficient to prevent
looping.

Consider the example network topology shown in Fig.
1. In this example, links (B, D) and (C, E) have failed,
and we assume that enough time has elapsed that the
unicast routing tables have converged. Let router A
be a member receiver and D the primary core for a
group. Fig. 2 (a) shows the multicast tree created by
CBT, where the thick arrows are the tree edges and they
point from a router to its parent in the tree. Let the
links (B, D) and (C, E) recover at time ¢; after the tree
has been established. Then, at time ¢t > ¢, link (C, D)
fails. According to CBT, when the link fails, router C' is
responsible for re-attaching itself (and its subtree) to the
multicast tree. Thus, router C' tests the highest ranking
core, i.e., router D, for reachability by sending a ping
message and waiting for a response. Since D is up, C
will get a response and decides that core D is reachable.
Thus, it sends an active re-join request (as it has a child
in the tree) towards D via next-hop E, as shown in Fig.
2 (b). When the active re-join request reaches F, it
is acknowledged. The acknowledgement traverses the
path that the active re-join request took and establishes
the edges in the tree. At this point, there is a loop in the
multicast tree as shown in Fig. 2 (¢), and data packets
that are on the subtree and the new data packets that
hit it will loop around. The loop detection mechanism
in CBT is based on F' and all its ancestors forwarding
an inactive re-join up to their parents. This way, when
C' gets its own re-join request, it detects the loop and
sends a quit request to its parent F, and tries again.
Depending on the delays in the network, the inactive
re-join can reach to C' after the acknowledgement for
the active re-join, so that the loop can persist for a
significant time in CBT. In the example, all the retries
by C will fail and C' will have to flush the tree.

Similar behavior can be shown to occur if the primary
core is down and the secondary core C?2 is in the subtree
of the router C trying to re-join. In fact, all active re-
joins sent by C will form a loop. Therefore, the subtree
at C has to be deconstructed and flushed.

2.2 Looping in PIM

In PIM, receivers join a multicast tree of a group
by sending join messages to special routers, called ren-
dezvous points (RPs), for the group. They also send join
messages to sources from which they want the shortest
path. The join messages establish multicast forward-
ing information in routers. The receivers send the join
messages periodically to refresh the state information
regarding the multicast tree. An RP sends reachability
messages periodically to its subtree to inform the re-
ceivers in its subtree that it is alive. To provide a level
of reliability several RPs are used for each group. A
source sending to group transmits its unicast data to
all the RPs for a group. When an RP gets data from a
source, it sends a join message to the source to establish
state information about the multicast tree. This is also
done periodically to maintain the tree. Garbage collec-
tion is when state information times out at routers.

Unicast routing-table looping affects and degrades
the performance of PIM in several important ways.
Consider the network topology used in the previous sec-
tion, shown in Fig. 1. Receiver A sends a join upstream
towards RP D as shown in Fig. 3 (a). The join mes-
sage is forwarded by router B to E due to routing-table

- -= Join request

——= Treeedge (pointing to parent)

(a)

—— Treeedge (pointing to parent)

(b)

- -> Join request
——= Treeedge (pointing to parent)

()

Figure 2: Transient loops in CBT.

looping. This results in establishing £ as a child of
router F', thereby creating an incorrect forwarding state
information at F' and E. Although not in this small ex-
ample, this looping of join messages can be arbitrarily
windy and can thus set up incorrect state information in
many routers. As a result, data packets are forwarded
on paths in the network that do not lead to any receivers
due to incorrect information. Shown in Fig. 3(c), the
path (E, F) is such a path in the example. This be-
havior will persist until the incorrect state information
times out. Moreover, as a result the loop, routers up-
stream of B may time out and flush their state informa-
tion. Thus, data packets cannot flow downstream and
they are discarded. Data packets can also experience
looping, if router B picks as its parent router which is
a descendent on the multicast tree, e.g., F, as shown
in Fig. 3(b). Because looping behavior is oscillatory
by counting-to-infinity, incorrect data packet forward-
ing can persist for some time. Thus, the data packets
from B can loop back to B and traverse the whole sub-
tree at B again.

Next, lets consider reachability messages, which are
sent by RPs to their subtrees to inform the receivers
that they are alive. As aresult of looping conditions, the
periodic reachability messages that are sent downstream
can get discarded by the reverse path forwarding (RPF)
check. Because the information on the next-hop to an
RP may not be correct due to routing table looping.
This may lead downstream routers to think that the
RP is down, to look up an alternate possibly distal RP,
and to start sending joins to the other RP.

3 Multicast and network models

Like CBT and PIM, SIMP adopts the host group
multicast model [2], which is used in the existing IP
architecture. The model defines the service interface
to the users of the internetwork. Each multicast ad-
dress identifies a group of receivers to which a multicast
packet is delivered with “best effort.” The set of the
receivers of a multicast packet is called a host group.
To send messages to a group, a sender specifies the des-
tination of the messages with the multicast address of
the group; it does not need to know the addresses of the
individual members of the group. Any sender can send
to a group, whether or not it is a member of the group.
The number and location of members in a group can
be arbitrary and dynamic. The membership of different
groups may also overlap.

A protocol (e.g., IGMP [2]) is assumed for the routers
to monitor the presence of group members on their
attached subnetworks and to propagate and exchange
multicast information. Furthermore, for any multi-

access LAN with two or more routers, there is a des-
ignated router (DR), just as in CBT and PIM, to act
on the behalf of the end hosts on the LAN to start, join,
or end a multicast communication and to transmit com-
munication packets of a group. A simple DR election
mechanisms suffices, e.g., the router with the largest TP
address becomes a DR, or the Hello protocol.

The network consists of an arbitrary interconnec-
tion of routers by local area networks (LANSs) or point-
to-point links. A network is represented by a graph
G = (V, E), where nodes represent routers, and edges
represent links. The links are bidirectional and have a
time-dependent positive cost which is the same in both
directions. A link is operational if it is operational in
both directions. SIMP assumes there is an underlying
protocol that maintains up and down states for links
and routers. Thus, a router knows within a finite time
if its adjacent links are operational. All SIMP control
messages sent over operational links are received cor-
rectly and in proper order within a finite time; this ser-
vice is provided by an underlying protocol. All message
arrivals, link failures and recoveries, link-cost changes,
are processed one at a time and in the order of their
occurrence.

4 Overview of SIMP

SIMP is based on diffusing computations [4, 5]. A
router initiates a computation by sending queries to its
neighbors and waits for replies from the neighbors to
detect termination. A query specifies a computation re-
quested from the receiving router. A query or a reply
may have additional information germane to the partic-
ular computation requested.

Each router has a link-cost table giving the cost of
the adjacent links. It is assumed that link costs are
symmetric in both directions. Each router x knows the
next-hop router and the distance cost to destinations
from unicast routing-table U RT™.

The multicast tree for a group is rooted at a router,
which is usually a source for the group. The tree-
predecessor and tree-successors are defined with respect
to the root. The tree-predecessor of a router x is the
parent of x, and a tree-successor of a router z is a
router a child of z. In each router z, SIMP maintains a
multicast routing table (M RT®) for recording the tree-
predecessor and tree-successor set of a multicast tree at
z. This information is used in forwarding data pack-
ets. The information about a multicast tree is stored in
MRT?® is indexed by (s, g), where s is the root of a tree
for group g. When the source and group of a packet
match an entry (s,g), and the packet arrived via the
tree-predecessor of the entry, the packet is forwarded on

--> Join toD
—— Next-hopto D

(a)

— Treeedge

--> Join toD
—— Next-hoptoD

(b)

--> Join toD
—— Next-hoptoD

()

—— Treeedge

Figure 3: Transient loops in PIM.

all tree-successors of the entry. When the source does
not match any entry but the group matches a shared
entry, which is identified as having the bit shared bit
set, the packet is forwarded using the shared tree. Us-
ing the shared tree, the data packet is forwarded to all
neighboring routers in the tree except the router from
which the packet was received.

There are several different computations in SIMP. A
query specifies the computation to be carried out. The
Expand computation is used by a router to grow or
establish a multicast subtree at the router. The Join
computation is used by router to become part of the
multicast tree. The Terminate computation is used by
a router to tear down its subtree. The Root-update
computation is used by a router to update cost and
root information in its multicast subtree. The Prune
computation is used by a leaf router on the tree to re-
move itself from the multicast tree. In this paper, we
have enough space to only describe source-initiated tree
construction in SIMP. The complete description is given
elsewhere [7].

The source-initiated tree construction is well-suited
for small groups, where it is manageable for the source
to know the identity of the receivers. A good example
of such application is video conferencing, which will or-
dinarily involve fewer than hundreds of sites. This also
gives the source more control over the distribution. The
Expand computations are the primary means used in
the source-initiated multicast tree creation. The com-
putation proceeds with the transmission and reception
of Expand queries and replies. In all queries and replies,
the source s and group address g are specified along with
other germane information.

All routers are initialized in the idle state. A router
involved in an Expand computation is said to be in
an expand-active state. A router z in an expand-
active state has a tentative predecessor ep®, called e-
predecessor, to which it owes a reply; and has tentative
successors, called e-successors, from which it expects
replies. When the router finishes its computation and
becomes part of the multicast tree, it is defined to be in
an expand-passive state.

The description of SIMP is given with respect to
a generic multicast tree for a group ¢ and rooted at
source s. To avoid cumbersome notation, the subscript-
ing by (s, g) as shown here in the names of auxiliary and
state variables and routing information associated with
a given multicast tree is suppressed in the description
and discussion of SIMP. The following notation is used
throughout:

dl‘;y .

T, .
€€S)g H
ps;H)

link cost from router z to y.
e-predecessor of z for initiator ¢.
tree-predecessor of £ on the path from s.

Df)‘gy : path cost from router to y in a multicast tree.
D*Y(M) : path cost from router « to y in query or reply M.
EAf)g : active expand set of .

EA::;’ : active expand set of & for neighbor y.

ED?, expand done set of z for entry (s, g).

EQ®Y expand query from z to neighbor y.

ER™Y expand reply from @ to neighbor y.

R(M): set of destinations in a query or reply M.

UR” : set of unreachable destinations at router z.

To start a multicast session, source router s becomes
expand-active for a set of members in the group and
sends expand queries towards the members. When
a member router receives an expand query for itself,
it replies with an expand-ack, thereby establishing an
edge of the multicast tree. As the replies flow to the
source, the edges belonging to the multicast tree are es-
tablished. When the source gets the replies to all its
queries, it becomes expand-passive and the multicast
tree spanning all reachable members is established.

When s becomes expand-active, it creates an (s, g)
entry in M RT?® which will contain all the pertinent in-
formation regarding the multicast tree and its compu-
tation. It sets a bit expand for the entry to indicate
that it is created by an expand computation. If s is
going to be the root of the shared tree for a group, it
also sets a bit shared for the entry. Let’s assume for
simplicity that s is creating a shared tree. Source s
sends query F@Q*7 to x which is the next-hop for a sub-
set L AT of group members, specifying the subset, the
cost D*7 (i.e., the link cost d*%), and the initiator s.
It also sets bit shared in EQ*®. Each member u for
which s sends a query is inserted in set EFA®. Source
s designates each neighbor z that receives a query as
an e-successor. Its tree-predecessor and e-predecessor
are set to null. Source s uses a reply counter for each
e-successor to know when it has all the replies from the
e-successor. It increments the counter for an e-successor
by one when it sends a query to the e-successor. When
it receives the reply from the e-successor, it decrements
the counter by a value given in the reply.

When an idle router z receives an expand query
EQY®, it becomes expand-active and creates an (s, g)
entry in MRT®. It sets the expand bit for the en-
try. If the query indicates that the tree is shared, x
also sets the shared bit for the entry. It initializes
ep®™*® «— p® «— y. Router x uses a query counter to
know how many queries it has received from y. It is in-
cremented whenever z receives a query. Router z speci-
fies the value of the counter in its reply to y, and zeroes
out the counter after giving its reply to y. Thereby, =
aggregates its replies to y. If R(EQY") = =, router z
replies with an expand-ack, in which it specifies itself,
the initiator s, and the value of the query counter, and

it becomes expand-passive. If R(EQY®) # z, router
takes the the same steps as s and sends expand queries
towards the reachable members in R(EQY-"). For mes-
sage efficiency, the members for which the next-hop is
y are considered unreachable; thus, no query is sent for
them. Source s is specified as the initiator in the queries.

Let # in an expand-active state receives another
query EQ** such that R(FQ**) # 0. It compares
D**(EQ*%) to D** to decide its response. First con-
sider the case z # ep™®. If D**(EQ*") < D*%, it sends
an expand-nack to ep®?, specifying the initiator s, and
the value of the query counter. It may optionally spec-
ify in the expand-nack the members for which it has
received replies, i.e., ED®. The expand-nack indicates
to ep™® that z is not a tree-successor for ep™*. Router
z also sends a prune request to p®, if p® # ep™?. The
prune request removes & from the tree-successor set of
p*. If z is a tree-successor of z, router x removes it
from the set. It sets ep™*® «— p® «— 2z and D% —
D**(EQ*%). On the other hand, if D**(EQ*") > D",
it sends an expand-nack to z.

Irrespective of D**(EQ*"), x updates EA®. Let
X = {u| member u € R(EQ*") and u ¢ EA”}. Router
x forwards queries for the reachable members in X as
before. A basic expand query E'Q is defined to be an ex-
pand query such that R(EQ) = 0. If z updated D" it
sends a basic expand query to each tree-successor and to
each e-successor that is not the next-hop for a member
in X.

Now consider the case z = ep™*. If D**(EQ*") <
D** router x updates D*% — D**(EQ*"). However,
it D**(EQ*") > D*®, it saves the value of D**(EQ*7)
until it becomes expand-passive to update D**. Router
x takes takes the same steps and forwards queries for the
reachable members in X as before, where X is defined
as above. It sends basic expand queries also as above.
The cost specified in the expand queries forwarded is
calculated using D**(EQ*"), e.g., the cost in an expand
query to y equals D*7(EQ*") + d™ V.

Router z in an expand-passive state can receive query
EQ**. If D**(EQ**) < D*®, x sends a prune re-
quest to p¥, sets p® — z, updates D*% — D**(EQ*").
However, if D**(EQ**) > D**, no prune request 1s
sent, nor p® and D*® are changed. Router z does not
have to remember D**(EQ*7), but it might be use-
ful information while p* # ep”. Lets assume z saves
D**(EQ**) in variable D", Next, z sets ep™* «— z.
Note that the tree-predecessor and e-predecessor may
become different in the course of tree construction. Ir-
respective of D**(EQ**), it becomes expand-active,
initializes EA* — R(EQ*7), and sends the necessary
queries as before.

A router x in an expand-passive or -active state may
receive a basic expand query F@Q**. First, consider the
case when z is expand-passive. Router may receive a
basic expand query only from z = p%, in which case it
becomes expand-active. If D**(EQ*") < D*7% it up-
dates D*® — D**(EQ**). Otherwise, it waits until it
has all its replies from its e-successors to update D**.
Router z forwards a basic expand query to each of its
tree-successors. The cost specified in the queries for-
warded is calculated using D”SEQ“”), e.g., the cost in
a query to y equals D**(EQ*%) + d*Y.

Next, consider when z is expand-active. Router z
may receive a basic expand query only from p® or ep™?.
In the following, when we use a basic expand query from

ep™*, ie., EQ?" % it implies that ep®* # p®. More-
over, whenever basic expand queries need to be sent, the
cost in the queries are calculated using the cost of the
received basic expand query. If D**(EQ®"" %) < D*?,
z sends a prune request to p”, sets p© — ep™®, an

sends basic expand queries to its tree-, and e-successors.
If DST(EQ®"" %) > D* it does nothing other than
increment the appropriate query counter. Since z was
expand-active for ep™* before receiving the query, it will
send a reply to ep®™?®. When z sends it reply to ep®*, the
value of the query counter specified in the reply accounts
for the basic expand query. If D”(Esz’x) < D%%
router z updates D*%. However, if D**(EQP) >

D*? it saves the value of D*®(EQP"") to update D*®
when it becomes expand-passive. In either case, it sends
basic expand queries to each of its tree-, e-successors.
If D*®(EQP"®) > D", it sends a prune request to p®
and sets p® — ep™”.

Whenever a router z receives a reply from e-successor
z, it adds the set of members in the reply to set ED?T.
Once z has received all the replies to its expand com-
putation with initiator ¢, it gives a reply to ep™?, spec-
ifying ED® i, and the query counter in the reply. If
ep®' #£ p%, the reply to ep™' is an expand-nack. If
ep”™? = p” and z has neither local host members nor
tree-successors, the reply is also an expand-nack. If
ep™? = p® and z has either local host members or tree-
successors, the reply is an expand-ack. Router z zeroes
out its query counter for initiator ¢ after giving its re-
ply, does the necessary clean-up, and becomes expand-
passive if it replied with an expand-ack; otherwise, it
cleans up all the state information and becomes idle.

When s gets all its replies, it finds the potentially
unreachable set UR® — FEA® — ED*. The receivers
in U R* are potentially not on the multicast tree. Some
receivers in U R® may already be on the tree, but, if their
expand-acks were lost, they appear in UR®. Source s
starts a new computation to reach the receiver in U R?®
using alternative next-hops. If s has exhausted all it
neighbors in trying to reach a router in U R?, it decides
the router to be unreachable.

References

[1] A. J. Ballardie, P. F. Francis, and J. Crowcroft. Core-based
Trees (CBT). In Proc. of SIGCOMM ’93, pages 85-95, 1993.

[2] S. E. Deering. Host Extensions for IP Multicasting. RFC
1112, Aug. 1988.

[3] S. E. Deering et al. An Architecture for Wide-area Multicast
Routing. ACM Computer Communication Review, 24(4):126—
135, 1994.

[4] E. W. Dijkstra and C. S. Scholten. Termination Detection
for Diffusing Computation. Inform. Process. Lett., 11(1):1-4,
1980.

[5] J. J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing
Computations. IEEE/ACM Trans. on Networking, 1(1):130—
141, 1993.

[6] J. Moy. Multicast Extension to OSPF. Internet Draft, 1992.

[7] M. Parsa and J.J. Garcia-Luna-Aceves. A Protocol for Scal-
able Internet Multicast Routing. Submitted for publication,
1995.

[8] D. Waitzman, C. Partridge, and S. Deering. Distance Vector
Multicast Routing Protocol. RFC 1075, Nov 1988.

[9] L. Wei and D. Estrin. The Trade-offs of Multicast Trees and
Algorithms. In Proc. of ICCCN, 1994.

